Post by 1dave on Jun 10, 2017 17:56:07 GMT -5
As magma reaches the surface and cools it produces an interesting array of rocks. For an in depth presentation, see:
wray.eas.gatech.edu/epmaterials2013/LectureNotes/Lecture20.pdf
There appears to be two distinct groupings of basalt: alkaline and subalkaline.
The latter can be further subdivided into tholeiitic and calc-alkaline. Therefore we can identify three kinds of Basalt:
Alkaline occurs everywhere except where plates have pulled apart.
Calc-Alkaline occurs only where plates have come together - also the main locations for Andesite!
Tholeiitic, the most common basalt, occurs everywhere.
As for the other two, I've added the most important information on the following AFM diagram.
When magmas cool without reaching the earth's surface they become plutons. As they cool minerals crystallize and drop out, so they evolve as they become more silica rich - from peridotite to gabbro to diorite to granodirite to granite.
When magmas pour out on the surface they become known as lava.
there are four kinds of lava:
en.wikipedia.org/wiki/Lava
wray.eas.gatech.edu/epmaterials2013/LectureNotes/Lecture20.pdf
There appears to be two distinct groupings of basalt: alkaline and subalkaline.
The latter can be further subdivided into tholeiitic and calc-alkaline. Therefore we can identify three kinds of Basalt:
Alkaline occurs everywhere except where plates have pulled apart.
Calc-Alkaline occurs only where plates have come together - also the main locations for Andesite!
Tholeiitic, the most common basalt, occurs everywhere.
Alkali basalt or alkali olivine basalt is a fine-grained, dark-coloured, volcanic rock characterized by phenocrysts of olivine, titanium-rich augite, plagioclase feldspar and iron oxides. For similar SiO2 concentrations, alkali basalts have a higher content of the alkalis, Na2O and K2O, than other basalt types such as tholeiites. They are also characterized by the development of modal nepheline in their groundmass (visible at highest magnification on a petrographic microscope) and normative nepheline in their CIPW norms. Alkali basalts are typically found on updomed and rifted continental crust, and on oceanic islands such as Hawaii, Madeira and Ascension Island.
As for the other two, I've added the most important information on the following AFM diagram.
When magmas cool without reaching the earth's surface they become plutons. As they cool minerals crystallize and drop out, so they evolve as they become more silica rich - from peridotite to gabbro to diorite to granodirite to granite.
When magmas pour out on the surface they become known as lava.
there are four kinds of lava:
en.wikipedia.org/wiki/Lava
The composition of almost all lava of the Earth's crust is dominated by silicate minerals, mostly feldspars, olivine, pyroxenes, amphiboles, micas and quartz.
Silicate lavas
Igneous rocks, which form lava flows when erupted, can be classified into three chemical types; felsic, intermediate, and mafic (four if one includes the super-heated ultramafic). These classes are primarily chemical; however, the chemistry of lava also tends to correlate with the magma temperature, its viscosity and its mode of eruption.
Felsic lava
Felsic or silicic lavas such as rhyolite and dacite typically form lava spines, lava domes or "coulees" (which are thick, short lava flows) and are associated with pyroclastic (fragmental) deposits. Most silicic lava flows are extremely viscous, and typically fragment as they extrude, producing blocky autobreccias. The high viscosity and strength are the result of their chemistry, which is high in silica, aluminium, potassium, sodium, and calcium, forming a polymerized liquid rich in feldspar and quartz, and thus has a higher viscosity than other magma types. Felsic magmas can erupt at temperatures as low as 650 to 750 °C (1,202 to 1,382 °F). Unusually hot (>950 °C; >1,740 °F) rhyolite lavas, however, may flow for distances of many tens of kilometres, such as in the Snake River Plain of the northwestern United States.
Intermediate lava
Intermediate or andesitic lavas are lower in aluminium and silica, and usually somewhat richer in magnesium and iron. Intermediate lavas form andesite domes and block lavas, and may occur on steep composite volcanoes, such as in the Andes. Poorer in aluminium and silica than felsic lavas, and also commonly hotter (in the range of 750 to 950 °C (1,380 to 1,740 °F)), they tend to be less viscous. Greater temperatures tend to destroy polymerized bonds within the magma, promoting more fluid behaviour and also a greater tendency to form phenocrysts. Higher iron and magnesium tends to manifest as a darker groundmass, and also occasionally amphibole or pyroxene phenocrysts.
Mafic lava
Mafic or basaltic lavas are typified by their high ferromagnesian content, and generally erupt at temperatures in excess of 950 °C (1,740 °F). Basaltic magma is high in iron and magnesium, and has relatively lower aluminium and silica, which taken together reduces the degree of polymerization within the melt. Owing to the higher temperatures, viscosities can be relatively low, although still thousands of times higher than water. The low degree of polymerization and high temperature favors chemical diffusion, so it is common to see large, well-formed phenocrysts within mafic lavas. Basalt lavas tend to produce low-profile shield volcanoes or "flood basalt fields", because the fluidal lava flows for long distances from the vent. The thickness of a basalt lava, particularly on a low slope, may be much greater than the thickness of the moving lava flow at any one time, because basalt lavas may "inflate" by supply of lava beneath a solidified crust. Most basalt lavas are of ʻAʻā or pāhoehoe types, rather than block lavas. Underwater, they can form pillow lavas, which are rather similar to entrail-type pahoehoe lavas on land.
Ultramafic lava
Ultramafic lavas such as komatiite and highly magnesian magmas that form boninite take the composition and temperatures of eruptions to the extreme. Komatiites contain over 18% magnesium oxide, and are thought to have erupted at temperatures of 1,600 °C (2,910 °F). At this temperature there is no polymerization of the mineral compounds, creating a highly mobile liquid with viscosity as low as that of water.[6][disputed – discuss] Most if not all ultramafic lavas are no younger than the Proterozoic, with a few ultramafic magmas known from the Phanerozoic. No modern komatiite lavas are known, as the Earth's mantle has cooled too much to produce highly magnesian magmas.
Unusual lavas
Some lavas of unusual composition have erupted onto the surface of the Earth. These include:
Carbonatite and natrocarbonatite lavas are known from Ol Doinyo Lengai volcano in Tanzania, which is the sole example of an active carbonatite volcano.[7]
Iron oxide lavas are thought to be the source of the iron ore at Kiruna, Sweden which formed during the Proterozoic.[8] Iron oxide lavas of Pliocene age occur at the El Laco volcanic complex on the Chile-Argentina border.[9] Iron oxide lavas are thought to be the result of immiscible separation of iron oxide magma from a parental magma of calc-alkaline or alkaline composition.[8]
Sulfur lava flows up to 250 metres (820 feet) long and 10 metres (33 feet) wide occur at Lastarria volcano, Chile. They were formed by the melting of sulfur deposits at temperatures as low as 113 °C (235 °F).[9]
Olivine nephelinite lavas are thought to have come from much deeper in the mantle of the Earth than other lavas.[10]
Silicate lavas
Igneous rocks, which form lava flows when erupted, can be classified into three chemical types; felsic, intermediate, and mafic (four if one includes the super-heated ultramafic). These classes are primarily chemical; however, the chemistry of lava also tends to correlate with the magma temperature, its viscosity and its mode of eruption.
Felsic lava
Felsic or silicic lavas such as rhyolite and dacite typically form lava spines, lava domes or "coulees" (which are thick, short lava flows) and are associated with pyroclastic (fragmental) deposits. Most silicic lava flows are extremely viscous, and typically fragment as they extrude, producing blocky autobreccias. The high viscosity and strength are the result of their chemistry, which is high in silica, aluminium, potassium, sodium, and calcium, forming a polymerized liquid rich in feldspar and quartz, and thus has a higher viscosity than other magma types. Felsic magmas can erupt at temperatures as low as 650 to 750 °C (1,202 to 1,382 °F). Unusually hot (>950 °C; >1,740 °F) rhyolite lavas, however, may flow for distances of many tens of kilometres, such as in the Snake River Plain of the northwestern United States.
Intermediate lava
Intermediate or andesitic lavas are lower in aluminium and silica, and usually somewhat richer in magnesium and iron. Intermediate lavas form andesite domes and block lavas, and may occur on steep composite volcanoes, such as in the Andes. Poorer in aluminium and silica than felsic lavas, and also commonly hotter (in the range of 750 to 950 °C (1,380 to 1,740 °F)), they tend to be less viscous. Greater temperatures tend to destroy polymerized bonds within the magma, promoting more fluid behaviour and also a greater tendency to form phenocrysts. Higher iron and magnesium tends to manifest as a darker groundmass, and also occasionally amphibole or pyroxene phenocrysts.
Mafic lava
Mafic or basaltic lavas are typified by their high ferromagnesian content, and generally erupt at temperatures in excess of 950 °C (1,740 °F). Basaltic magma is high in iron and magnesium, and has relatively lower aluminium and silica, which taken together reduces the degree of polymerization within the melt. Owing to the higher temperatures, viscosities can be relatively low, although still thousands of times higher than water. The low degree of polymerization and high temperature favors chemical diffusion, so it is common to see large, well-formed phenocrysts within mafic lavas. Basalt lavas tend to produce low-profile shield volcanoes or "flood basalt fields", because the fluidal lava flows for long distances from the vent. The thickness of a basalt lava, particularly on a low slope, may be much greater than the thickness of the moving lava flow at any one time, because basalt lavas may "inflate" by supply of lava beneath a solidified crust. Most basalt lavas are of ʻAʻā or pāhoehoe types, rather than block lavas. Underwater, they can form pillow lavas, which are rather similar to entrail-type pahoehoe lavas on land.
Ultramafic lava
Ultramafic lavas such as komatiite and highly magnesian magmas that form boninite take the composition and temperatures of eruptions to the extreme. Komatiites contain over 18% magnesium oxide, and are thought to have erupted at temperatures of 1,600 °C (2,910 °F). At this temperature there is no polymerization of the mineral compounds, creating a highly mobile liquid with viscosity as low as that of water.[6][disputed – discuss] Most if not all ultramafic lavas are no younger than the Proterozoic, with a few ultramafic magmas known from the Phanerozoic. No modern komatiite lavas are known, as the Earth's mantle has cooled too much to produce highly magnesian magmas.
Unusual lavas
Some lavas of unusual composition have erupted onto the surface of the Earth. These include:
Carbonatite and natrocarbonatite lavas are known from Ol Doinyo Lengai volcano in Tanzania, which is the sole example of an active carbonatite volcano.[7]
Iron oxide lavas are thought to be the source of the iron ore at Kiruna, Sweden which formed during the Proterozoic.[8] Iron oxide lavas of Pliocene age occur at the El Laco volcanic complex on the Chile-Argentina border.[9] Iron oxide lavas are thought to be the result of immiscible separation of iron oxide magma from a parental magma of calc-alkaline or alkaline composition.[8]
Sulfur lava flows up to 250 metres (820 feet) long and 10 metres (33 feet) wide occur at Lastarria volcano, Chile. They were formed by the melting of sulfur deposits at temperatures as low as 113 °C (235 °F).[9]
Olivine nephelinite lavas are thought to have come from much deeper in the mantle of the Earth than other lavas.[10]