Post by 1dave on Sept 25, 2022 10:54:32 GMT -5
www.google.com/search?q=jarosite&tbm=isch
The most common member of the alunite supergroup.
The Fe(III) analogue of alunite. Visually indistinguishable from natrojarosite and other members of the jarosite group.
Usually found as amber-yellow to brown crusts or coatings of minute crystals, larger crystals rather rare.
Jarosite on quartz from the Arabia District, Pershing County, Nevada
Jarosite crystals from Sierra Peña Blanca, Aldama, Chihuahua, Mexico (5.6 x 3.1 x 1.6 cm)
Crystal structure of jarosite Color code: Potassium, K: purple; Sulfur, S: olive; Iron, Fe: violet-blue; Cell: sky-blue.
Jarosite commonly occurs in the gossan (oxidized cap over an ore body).
The most common member of the alunite supergroup.
The Fe(III) analogue of alunite. Visually indistinguishable from natrojarosite and other members of the jarosite group.
Usually found as amber-yellow to brown crusts or coatings of minute crystals, larger crystals rather rare.
Jarosite on quartz from the Arabia District, Pershing County, Nevada
Jarosite crystals from Sierra Peña Blanca, Aldama, Chihuahua, Mexico (5.6 x 3.1 x 1.6 cm)
History
Jarosite was first described in 1852 by August Breithaupt in the Barranco del Jaroso in the Sierra Almagrera (near Los Lobos, Cuevas del Almanzora, Almería, Spain). The name jarosite is also directly derived from Jara, the Spanish name of a yellow flower that belongs to the genus Cistus and grows in this sierra. The mineral and the flower have the same color.
Mysterious spheres of clay 1.5 to 5 inches in diameter and covered with jarosite have been found beneath the Temple of the Feathered Serpent an ancient six level stepped pyramid 30 miles from Mexico City.[9]
Jarosite was first described in 1852 by August Breithaupt in the Barranco del Jaroso in the Sierra Almagrera (near Los Lobos, Cuevas del Almanzora, Almería, Spain). The name jarosite is also directly derived from Jara, the Spanish name of a yellow flower that belongs to the genus Cistus and grows in this sierra. The mineral and the flower have the same color.
Mysterious spheres of clay 1.5 to 5 inches in diameter and covered with jarosite have been found beneath the Temple of the Feathered Serpent an ancient six level stepped pyramid 30 miles from Mexico City.[9]
Jarosite is a basic hydrous sulfate of potassium and ferric iron (Fe-III) with a chemical formula of KFe3(SO4)2(OH)6. This sulfate mineral is formed in ore deposits by the oxidation of iron sulfides. Jarosite is often produced as a byproduct during the purification and refining of zinc and is also commonly associated with acid mine drainage and acid sulfate soil environments.
Jarosite has a trigonal crystal structure and is brittle, with basal cleavage, a hardness of 2.5-3.5, and a specific gravity of 3.15-3.26. It is translucent to opaque with a vitreous to dull luster, and is colored dark yellow to yellowish-brown. It can sometimes be confused with limonite or goethite with which it commonly occurs in the gossan (oxidized cap over an ore body). Jarosite is an iron analogue of the potassium aluminium sulfate, alunite.
Jarosite has a trigonal crystal structure and is brittle, with basal cleavage, a hardness of 2.5-3.5, and a specific gravity of 3.15-3.26. It is translucent to opaque with a vitreous to dull luster, and is colored dark yellow to yellowish-brown. It can sometimes be confused with limonite or goethite with which it commonly occurs in the gossan (oxidized cap over an ore body). Jarosite is an iron analogue of the potassium aluminium sulfate, alunite.
Crystal structure of jarosite Color code: Potassium, K: purple; Sulfur, S: olive; Iron, Fe: violet-blue; Cell: sky-blue.
Solid solution series
The alunite supergroup includes the alunite, jarosite, beudantite, crandallite and florencite subgroups. The alunite supergroup minerals are isostructural with each other and substitution between them occurs, resulting in several solid solution series. The alunite supergroup has the general formula AB3(TO4)2(OH)6. In the alunite subgroup B is Al, and in the jarosite subgroup B is Fe3+. The beudantite subgroup has the general formula AB3(XO4)(SO4)(OH)6, the crandallite subgroup AB3(TO4)2(OH)5•H2O and the florencite subgroup AB3(TO4)2(OH)5 or 6.
Crystal structure of jarosite Color code: Potassium, K: purple; Sulfur, S: olive; Iron, Fe: violet-blue; Cell: sky-blue.
In the jarosite-alunite series Al may substitute for Fe and a complete solid solution series between jarosite and alunite, KAl3(SO4)2(OH)6, probably exists, but intermediate members are rare. The material from Kopec, Czech Republic, has about equal Fe and Al, but the amount of Al in jarosite is usually small.
When jarosite forms from pyrite oxidation in sedimentary clays, the main sources of K+ are illite, a non-swelling clay, or K-feldspar. In other geological settings mica's alteration can also be a source of potassium.
In the jarosite-natrojarosite series Na substitutes for K to at least Na/K = 1:2.4 but the pure sodium end member NaFe3(SO4)2(OH)6 is not known in nature. Minerals with Na > K are known as natrojarosite. End member formation (jarosite and natrojarosite) is favoured by a low temperature environment, less than 100 °C, and is illustrated by the oscillatory zoning of jarosite and natrojarosite found in samples from the Apex Mine, Arizona, and Gold Hill, Utah. This indicates that there is a wide miscibility gap between the two end members,[5] and it is doubtful whether a complete series exists between jarosite and natrojarosite.
In hydroniumjarosite[6] the hydronium ion H3O+ can also substitute for K+, with increased hydronium ion content causing a marked decrease in the lattice parameter c, although there is little change in a.[7] Hydroniumjarosite will only form from alkali-deficient solutions, as alkali-rich jarosite forms preferentially.
Divalent cations may also substitute for the monovalent cation K+ in the A site.[8] Charge balance may be achieved in three ways.
Firstly by replacing two monovalent cations by one divalent cation, and leaving an A site vacancy, as in plumbogummite, Pb2+Al3(PO4)2(OH)5.H2O, which is a member of the crandallite subgroup.
Secondly by incorporating divalent ions in the B sites, as in osarizawaite, Pb2+Cu2+Al2(SO4)2(OH)6, alunite subgroup, and beaverite, Pb2+Cu2+(Fe3+,Al)2(SO4)2(OH)6, jarosite subgroup.
Thirdly by replacing divalent anions with trivalent anions, as in beudantite, PbFe3+3(AsO4)3−(SO4)(OH)6, beudantite subgroup.
The alunite supergroup includes the alunite, jarosite, beudantite, crandallite and florencite subgroups. The alunite supergroup minerals are isostructural with each other and substitution between them occurs, resulting in several solid solution series. The alunite supergroup has the general formula AB3(TO4)2(OH)6. In the alunite subgroup B is Al, and in the jarosite subgroup B is Fe3+. The beudantite subgroup has the general formula AB3(XO4)(SO4)(OH)6, the crandallite subgroup AB3(TO4)2(OH)5•H2O and the florencite subgroup AB3(TO4)2(OH)5 or 6.
Crystal structure of jarosite Color code: Potassium, K: purple; Sulfur, S: olive; Iron, Fe: violet-blue; Cell: sky-blue.
In the jarosite-alunite series Al may substitute for Fe and a complete solid solution series between jarosite and alunite, KAl3(SO4)2(OH)6, probably exists, but intermediate members are rare. The material from Kopec, Czech Republic, has about equal Fe and Al, but the amount of Al in jarosite is usually small.
When jarosite forms from pyrite oxidation in sedimentary clays, the main sources of K+ are illite, a non-swelling clay, or K-feldspar. In other geological settings mica's alteration can also be a source of potassium.
In the jarosite-natrojarosite series Na substitutes for K to at least Na/K = 1:2.4 but the pure sodium end member NaFe3(SO4)2(OH)6 is not known in nature. Minerals with Na > K are known as natrojarosite. End member formation (jarosite and natrojarosite) is favoured by a low temperature environment, less than 100 °C, and is illustrated by the oscillatory zoning of jarosite and natrojarosite found in samples from the Apex Mine, Arizona, and Gold Hill, Utah. This indicates that there is a wide miscibility gap between the two end members,[5] and it is doubtful whether a complete series exists between jarosite and natrojarosite.
In hydroniumjarosite[6] the hydronium ion H3O+ can also substitute for K+, with increased hydronium ion content causing a marked decrease in the lattice parameter c, although there is little change in a.[7] Hydroniumjarosite will only form from alkali-deficient solutions, as alkali-rich jarosite forms preferentially.
Divalent cations may also substitute for the monovalent cation K+ in the A site.[8] Charge balance may be achieved in three ways.
Firstly by replacing two monovalent cations by one divalent cation, and leaving an A site vacancy, as in plumbogummite, Pb2+Al3(PO4)2(OH)5.H2O, which is a member of the crandallite subgroup.
Secondly by incorporating divalent ions in the B sites, as in osarizawaite, Pb2+Cu2+Al2(SO4)2(OH)6, alunite subgroup, and beaverite, Pb2+Cu2+(Fe3+,Al)2(SO4)2(OH)6, jarosite subgroup.
Thirdly by replacing divalent anions with trivalent anions, as in beudantite, PbFe3+3(AsO4)3−(SO4)(OH)6, beudantite subgroup.